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Improved Calibration and Measurement of
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Abstract — A novel procedure for the calibration of microwave integrated
circuit test fixtures, based on a generalization of the “through-reflect-line”
algorithm, is presented. Its advantages compared with previous methods,
namely bandwidth of validity and standards availability, are discussed. The
approach is verified through the characterization of a particular microstrip
verification standard using both the “generalized TRL” and precision 7
mm calibration techniques. Comparison of the results obtained from these
schemes indicates that both the effective directivity and the source/load
match are better than 30 dB.

1. INTRODUCTION

HE ACCURATE characterization, in terms of scatter-

ing parameters, of microwave integrated -circuits
(MIC’s) both in the component fabrication environment
(device evaluation, wafer probing) and in the field of
modeling and IC design is of considerable importance. A
number of calibration schemes, mainly for active device
characterization, have been proposed for MIC media.

The conventional open, short, load technique has proved
unsatisfactory in MIC media due to the difficulties associ-
ated with both the modeling of open- and short-circuit
parasitic effects and the construction of a fixed or sliding
load. Another technique [1] uses offset opens of unknown
reflection coefficient, but still makes use of a perfect short.
Moreover its bandwidth of operation is limited to approxi-
mately two octaves [2] for a single set of standards. More
recently the “through-short-delay” (TSD) [3] algorithm
has been implemented, but this technique does not elimi-
nate the problem of relying on either a short or open
standard and suitable means of modeling these. Another
factor which limits the accuracy of the above techniques
arises from using a “perfect” short as a calibration stan-
dard when errors are introduced when obtaining the refer-
ence planes. The approach described here uses a general-
ization of the “through-refiect-line” (TRL) [4] algorithm in
which the only standards required are two lengths of
transmission line and two equal reflects of unknown reflec-
tion coefficient. Only one type of standard, therefore, is
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needed (a length of transmission line) and it is possible to
define the reference planes arbitrarily as a function of the
ratio of the lengths of the delay lines.

The detailed solution for the error terms which define
the automatic network analyzer system is presented in
Section II. It is then shown how the generalized TRL
algorithm can be used to obtain both the conventional
TRL and LRL (“line-reflect-line”) techniques. In Section
IIT the generalized TRL is presented together with some
considerations on accuracy and this is followed, in Section
IV, by experimental results from a particular microstrip
standard.

II. ERROR TERMS CALCULATION
A. General Solution

This section is concerned with the procedure for obtain-
ing the error terms describing a network analyzer system.
The procedure presented here is a development from the
original TRL publication [4]. The contribution here is the
reformulation in terms of S pararaeters and the removal of
the requirement to specify a line length. It is assumed that
the errors associated with measurement-port mismatch
changes, typical of switching scattering-parameter test sets,
are negligible.

In Fig. 1 are shown the error boxes A and B, which
represent the set of systematic errors present in an S-
parameter measurement. Shown, also, are the standards to
be measured, namely, two lengths of identical transmission
lines and two identical reflects of unknown characteristics.

Use will be made of the wave cascading matrix [R],

defined by
o] -tx1f] 1)

in which the [R] matrix may be obtained from the [S]

matrix using
1/-A S,
[R]= S_( -S, 1 )
21 22

2)

where

— -«
A= 8518 — 812551

(3)
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Fig. 1. Network analyzer model and standards for calibration.

If the cascading matrices of the error boxes A and B are
denoted [R ] and {R], and those for line 1 and line 2 are
[R,;] and [R,,], connection of lines 1 and 2 between error
boxes A and B yields

[Rm] = [RA]'[RLl]'[RB] (4)
[Rm] = [RA]'[RLz]'[RB]- (5)

Following the procedure outlined in [4], two quadratic
equations are obtained after eliminating first [R;] and
then [R,] in (4) and (5). The roots from these equations
are

Ry 4 _ A, -5 _ S124514 (6)
Rya  Sna . S04
Ry,
=5 (7)
R,,, 114
and
Rsip
=- (8)
R,z 22B
Rip Ap S128515
R - S — Oxnp "S—‘ (9)
128 11B 11B

The correct root choice in (6) and (7) and in (8) and (9)
is made from the observation that one of the roots has a
magnitude much smaller than the other.

The only other result that may be obtained from the
system of equations generated from the matrix equations
(4) and (5) is [4], [5] the transmission parameter W of a
delay line with the same propagation constant (y) as that
of lines /; and /, and length given by their difference
Al=1,—-1,1ie,

W = eY(Izgll)‘
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So far, expressions for the five terms e>(>~%, g,
S22 81248314/ 804, a0d 81,585, 5/5115 have been intro-
duced. To solve properly for the error terms in their
normalized form, corresponding expressions for S,, ,, S, 5.
S12.450 4, and S}, 55, are still needed. This can be done
by using the same reflect I'; for both ports (MIC reference
planes in Fig. 1), which gives

S124814
Ty= S8+ T—— (10)
r_R - S22A
S12885
F2=S223+T—-—-—. (11)
FR' - SllB

Eliminating T, ! from (10) and (11) yields

X Y
SZZA(1+Z)=S113(1+§) (12)

where
S5 45
Ya 1249214 (13)
Sn4
AYPRY
y A& 12B921B (14)
SllB
A £ rl - SllA (15)
B= Fz - S2ZB (16)

It should be noted, at this stage, that (12) relates S,, ,
and S}, 5, the remaining unknowns, and that X, ¥, A4, and
B are already known.

Now, with the shorter line inserted between error boxes
A and B:

~ 2/,
S48 4811567

A
T1Cs, S ©
22491186

(17)
so that

(18)

Combining (12) and (18) provides the roots S,, e~
and S, ze~ 71, namely

-1 -1
Spge =+ 1+—)£ 1+z 1+£
o A B C

. . Y X\t
Sy Ti=58,e Th 1+§ HZ )

X\ -1
SzzASuBe_ZYll:(l"'E) .

1/2

(19)

(20)

Then, from (13) and (14) we have
S1248n 48" = X8y, e~

(21)
(22)

-vh _vy. -
S1apSupe =Y Sy pe” M
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Fig. 2. Flow graph of error terms for generalized TRL calibration.

The correct choice of root in (19) is obtained as follows.
. From (10)

Si24Sn4™

(Tre™) ™' =5,y 6" + T 2k (23)
1 114

Now, I; and e may be written
Tp=Te/” (24)
e =pe/ (25)

so that

To=k (26)
B+0=a. (27)

If the correct choice of sign in (19) is made, (27) will be
satisfied. If the wrong choice is made, (27) will provide
B+ © with an offset of 180°. Equation (26), however, is
always satisfied and no information may be extracted from
it. Hence, if rough estimates of B and ® are made, the
correct root may be obtained. It is interesting to note that
the error in this estimation may be as large as +90°.

In Fig. 2(a) are shown the two error boxes A and B in
which half the length of the shorter line /; has been
included in each side. Expressions for the corresponding
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normalized error terms (Fig. 2(b)) are
Edf =S114 E; =Snp (7—8)
E;= Szer—yll E, =Sz " (29)
E, = S124Sn4e” ™ E,=SnpSupe” ™ (30)
E;= Spype ™ E,=S8ye™ " (31)
E;= Sy aSupe” ™ E,=S8,,Sne " (32)

Comparison of (19)—(22) and (28)—(32) shows that the
procedure so far developed provides the necessary error
terms for calibration except for E,; and E,, which are
unknown at this stage. The important fact is that this
calibration procedure will have its reference planes located
at the middle of the shorter line.

The remaining error terms, E, and E,, are obtained
from the analysis of the connection of the shorter line. The

corresponding transmission parameters are

SnaSupe” ™

= 33
S A (33)
S1p4S15e” M ‘
S, = 29k (34)

1= 8548118
Hence
E, = Sy aSype M= Szlm(l — 8y, 46" SuBe_yll) (35)
E,= SIZASIZBe_Yll = Sum(l - S:zer"Yl1 'SuBeMYIl)- (36)

B. TRL Procedure

In the TRL procedure the shorter line is “zero-length,”
meaning that e~ is equal to unity. This way the solution
obtained in (7), (8), (19)-(22), (35), and (36) completely
describes the two error boxes and the calibration is com-
plete. It is important to note that the only information
from the reflects is a rough estimate of its phase response
with frequency.

As can be seen from (4) and (5), at the frequencies at
which the delay line is half a wavelength the system of
equations is ill conditioned, leading to significant errors.
For the same reason, the best accuracy is obtained at the
frequency at which the delay is a quarter wavelength long.

C. LRL Procedure

In the TRL procedure the necessary through connection
and the use of the same reflect at both ports imply that the
technique may be only used with sexless connectors of the
same type. This problem is overcome with the LRL tech-
nique, as described in [7], and accurate measurements of
devices with different type of connectors can be made.

From the previous development ((7), (8), (19)—(22), (35),
and (36)), inspection of (28)—(32) shows that the value of
e is needed to obtain the correct value of the error terms.
According to the original publication [6], [7] it may be
solved in three ways: firstly, from a knowledge of both /;
and /,; secondly, from a measurement of a known reflect;
and thirdly, from the precise knowledge of the phase
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response of a short. It is clear that all three possibilities
will make use of high-quality reflects or well-defined length
delays, which are not easily obtained. The manner of
obtaining the solution here will become clear in the next
section, but for the conventional LRL procedure, it is
easily obtained from a knowledge of /; and /, as follows.
Recalling the transmission parameter W and using the
fact that /, /1, is known, it is easy to obtain e from

eY[1 — ean/(lz//1—1) = Wl/(lz/ll‘l)' (37)
The final solution for the error terms is then

X yy7! X\t
swn=ze{[1e 51+ 3) (143

1/2

(38)

Y X
S22A=SHB(1+E HZ) (39)
S124"S014= XS4 (40)
S1pSnp=Y Sip (41)
Sn4Snp=e" 'Szlm(l - SzzASuB/eM) (42)
S1248125 = €181, (1= Sy 1Sy 5/€™h). (43)

The correct choice of root in (38) is accomplished
through an estimate of the phase of the reflect, in the same
way as before.

III. THE GENERALIZED TRL
A. Discussion

The generalized TRL algorithm differs from the original
TRL in that there is no need for a “zero-length through.”
Moreover, it also differs from LRL in that no accurate
information is needed about the delay lines. The only extra
information required for the generalized TRL is an esti-
mate of the phase shift through A/ in order to solve the
ambiguity which arises when the square root of a complex
number is calculated. It is interesting to note that the
errors in both the estimates of the phase of the reflect and
the phase shift through A/ need only be less than +90°.

The advantage of this generalized TRL becomes appar-
ent when the fixture used relies on repeatable microstrip-
to-microstrip connections. In such cases, using the conven-
tional TRL would mean employing very short lengths of
transmission line and, more important, that the discontinu-
ities present in the through connection would be different
from those of the delay connection. Using the new proce-
dure these discontinuities are lumped together with the rest
of the imperfect test set [6]. If, on the other hand, repeat-
able coaxial-to-microstrip transitions are used, the general-
ized TRL provides a means of reducing the variation of
the length of the fixture when measuring different stan-
dards. This avoids problems related to cable bending re-
peatability, since A/ is normally very small (typically 2.5
mm for a 2 to 18 GHz calibration on alumina).

Finally it should be noted that for the particular case of
MIC calibration the reference planes can be chosen arbi-
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trarily once they are a function of the chosen (or specified)
ratio of the delay line lengths.

B. Accuracy Considerations

The degree of repeatability of connections involved in a
complete sequence of calibration and measurement will
affect the overall accuracy of any calibration procedure. In
MIC media this problem is more severe than in coax or
waveguide and care must be taken to ensure that this issue
does not dominate the overall accuracy of the calibrated
system.

With regard to the TRL technique, there are two aspects
to be clarified. Firstly, as the phase shift through A/
approaches 0° or 180°, the error associated with the solu-
tion of the system of equations becomes larger. Once the
maximum allowed error is limited, both the minimum and
maximum phase shifts through A/ are defined together
with the bandwidth over which the calibration is to be
performed [6]. Typically, a phase margin of around 16° is
sufficient to provide good calibration performance over a
decade bandwidth.

The second aspect concerns the reference impedance of
the calibrated system, defined by the impedance of the
delay lines, irrespective of this value. It is, therefore, only
important that the reference impedance be known accu-
rately if absolute measurements are to be performed, as
opposed to relative measurements using a particular set of
transmission line standards. It is worth noting that whereas
their impedance value is not used in the solution algo-
rithm, they nevertheless still represent the calibrated sys-
tem impedance reference Z,. In the way the generalized
TRL procedure has been solved, the only information
needed comprises rough estimates of both the phase of the
reflect and the value of the insertion phase of the shorter
delay (v/;); indeed, the reference plane is at the middle of
the shorter line.

IV. EXPERIMENTAL WORK

A comprehensive TRL/LRL algorithm has been imple-
mented on a computer using measurement data collected
from an HP8510 network analyzer system, and extensive
tests, using short lengths of precision air lines, have been
performed to ascertain the validity of the approach [8]. A
microstrip fixture which relies on repeatable coaxial-to-
microstrip transitions using tapered sections of air line has
also been used with the system. Performance figures for
each transition indicate the return loss and repeatability of
connections to be better than 23 dB and 30 dB, respec-
tively, over 2 to 18 GHz, as shown in Figs. 3 and 4.

To quantify the accuracy of the system a particular
microstrip circuit has been fabricated and measured using
both the generalized TRL technique and a conventional
calibration at the test set connector planes. The corre-
sponding microstrip calibration standards are shown in
Fig. 5. The results using both calibration techniques are
shown in Figs. 6 and 7. Trace a corresponds to measure-
ments using the generalized TRL, trace » uses a 7 mm
calibration at the test set connector planes, and trace ¢ was
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obtained by removing the effects of the coaxial-to-
microstrip .transitions present on measurement b using

time-domain techniques (gating). It is interesting to note

that the circuit acts like a bandpass filter, providing both
low and high return losses as well as low and high inser-
tion losses. It is, consequently, extremely sensitive to the
reference impedance in which its S parameters are evalu-
ated. i

Comparison of the results obtained with the two calibra-
tion procedures shows very good agreement. Return losses
in excess of 30 dB indicate figures for effective directivity
and source/load match of the same order.

V. CONCLUSIONS

A novel approach for accurate calibration and measure-
ment of MIC’s has been presented. The method is based
on an extension of the TRL procedure and makes use of
only one type of standard, a length of transmission line.
The removal of a requirement for a precise knowledge of
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Fig. 6. Return loss of the microstrip verification standard: a measure-
ment using the generalized TRL; b measurement using 7 mm connec-
tors; ¢ measurement b after use of time-domain gating.

the electrical length of transmission lines makes the tech-
nique especially attractive for use in conjunction with
on-wafer probes for MMIC evaluation. The measured per-
formance of a verification circuit shows encouraging fe-
sults when compared to those based on accurate calibra-
tion using 7 mm precision standards.
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